np.random namespace and use the global MT19937 generator. The same distributions are also available on Generator instances (see Generator API).
Continuous Distributions
uniform
Draw samples from a uniform distribution over[low, high).
| Name | Type | Default | Description |
|---|---|---|---|
low | number | 0 | Lower boundary (inclusive). |
high | number | 1 | Upper boundary (exclusive). |
size | number | number[] | undefined | Output shape. |
NDArray | number — Samples from the uniform distribution.
normal
Draw samples from a normal (Gaussian) distribution.| Name | Type | Default | Description |
|---|---|---|---|
loc | number | 0 | Mean of the distribution. |
scale | number | 1 | Standard deviation (spread). |
size | number | number[] | undefined | Output shape. |
NDArray | number — Samples from the normal distribution.
standard_normal
Draw samples from the standard normal distribution (mean=0, std=1). Equivalent tonormal(0, 1, size).
| Name | Type | Default | Description |
|---|---|---|---|
size | number | number[] | undefined | Output shape. |
NDArray | number — Standard normal samples.
exponential
Draw samples from an exponential distribution.| Name | Type | Default | Description |
|---|---|---|---|
scale | number | 1 | Scale parameter (beta = 1/lambda). |
size | number | number[] | undefined | Output shape. |
NDArray | number — Exponential samples.
standard_exponential
Draw samples from the standard exponential distribution (scale=1). Equivalent toexponential(1, size).
| Name | Type | Default | Description |
|---|---|---|---|
size | number | number[] | undefined | Output shape. |
NDArray | number — Standard exponential samples.
gamma
Draw samples from a Gamma distribution. Uses Marsaglia and Tsang’s method.| Name | Type | Default | Description |
|---|---|---|---|
shape | number | — | Shape parameter (k, alpha). Must be > 0. |
scale | number | 1 | Scale parameter (theta). Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Gamma-distributed samples.
standard_gamma
Draw samples from the standard Gamma distribution (scale=1).| Name | Type | Default | Description |
|---|---|---|---|
shape | number | — | Shape parameter (alpha). Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Standard gamma samples.
beta
Draw samples from a Beta distribution.| Name | Type | Default | Description |
|---|---|---|---|
a | number | — | Alpha parameter. Must be > 0. |
b | number | — | Beta parameter. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Beta-distributed samples in [0, 1].
chisquare
Draw samples from a chi-square distribution. Internally usesgamma(df/2, 2).
| Name | Type | Default | Description |
|---|---|---|---|
df | number | — | Degrees of freedom. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Chi-square samples.
noncentral_chisquare
Draw samples from a noncentral chi-square distribution.| Name | Type | Default | Description |
|---|---|---|---|
df | number | — | Degrees of freedom. Must be > 0. |
nonc | number | — | Non-centrality parameter. Must be >= 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Noncentral chi-square samples.
f
Draw samples from an F distribution.| Name | Type | Default | Description |
|---|---|---|---|
dfnum | number | — | Degrees of freedom in numerator. Must be > 0. |
dfden | number | — | Degrees of freedom in denominator. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — F-distributed samples.
noncentral_f
Draw samples from a noncentral F distribution.| Name | Type | Default | Description |
|---|---|---|---|
dfnum | number | — | Degrees of freedom in numerator. Must be > 0. |
dfden | number | — | Degrees of freedom in denominator. Must be > 0. |
nonc | number | — | Non-centrality parameter. Must be >= 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Noncentral F samples.
standard_cauchy
Draw samples from a standard Cauchy distribution (location=0, scale=1).| Name | Type | Default | Description |
|---|---|---|---|
size | number | number[] | undefined | Output shape. |
NDArray | number — Cauchy samples.
standard_t
Draw samples from a standard Student’s t distribution.| Name | Type | Default | Description |
|---|---|---|---|
df | number | — | Degrees of freedom. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Student’s t samples.
laplace
Draw samples from a Laplace (double exponential) distribution.| Name | Type | Default | Description |
|---|---|---|---|
loc | number | 0 | Location parameter (mean). |
scale | number | 1 | Scale parameter. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Laplace samples.
logistic
Draw samples from a logistic distribution.| Name | Type | Default | Description |
|---|---|---|---|
loc | number | 0 | Location parameter. |
scale | number | 1 | Scale parameter. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Logistic samples.
lognormal
Draw samples from a log-normal distribution. IfX ~ Normal(mean, sigma), then exp(X) ~ LogNormal.
| Name | Type | Default | Description |
|---|---|---|---|
mean | number | 0 | Mean of the underlying normal distribution. |
sigma | number | 1 | Standard deviation of the underlying normal. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Log-normal samples.
gumbel
Draw samples from a Gumbel distribution.| Name | Type | Default | Description |
|---|---|---|---|
loc | number | 0 | Location parameter. |
scale | number | 1 | Scale parameter. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Gumbel samples.
pareto
Draw samples from a Pareto II (Lomax) distribution.| Name | Type | Default | Description |
|---|---|---|---|
a | number | — | Shape parameter. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Pareto samples.
power
Draw samples from a power distribution with positive exponenta - 1 over [0, 1].
| Name | Type | Default | Description |
|---|---|---|---|
a | number | — | Shape parameter. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Power-distributed samples in [0, 1].
rayleigh
Draw samples from a Rayleigh distribution.| Name | Type | Default | Description |
|---|---|---|---|
scale | number | 1 | Scale parameter. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Rayleigh samples.
triangular
Draw samples from a triangular distribution over[left, right] with the given mode.
| Name | Type | Default | Description |
|---|---|---|---|
left | number | — | Lower limit. |
mode | number | — | Peak of the distribution. Must satisfy left <= mode <= right. |
right | number | — | Upper limit. Must satisfy left < right. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Triangular samples.
wald
Draw samples from a Wald (inverse Gaussian) distribution.| Name | Type | Default | Description |
|---|---|---|---|
mean | number | — | Mean of the distribution. Must be > 0. |
scale | number | — | Scale parameter. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Wald samples.
weibull
Draw samples from a Weibull distribution.| Name | Type | Default | Description |
|---|---|---|---|
a | number | — | Shape parameter. Must be > 0. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Weibull samples.
vonmises
Draw samples from a von Mises distribution (circular normal) on the interval[-pi, pi].
| Name | Type | Default | Description |
|---|---|---|---|
mu | number | — | Mode (center) of the distribution, in radians. |
kappa | number | — | Concentration parameter. Must be >= 0. When kappa = 0, the distribution is uniform on the circle. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Von Mises samples in [-pi, pi].
Discrete Distributions
poisson
Draw samples from a Poisson distribution.| Name | Type | Default | Description |
|---|---|---|---|
lam | number | 1 | Expected number of events (lambda). |
size | number | number[] | undefined | Output shape. |
NDArray | number — Poisson samples (non-negative integers).
binomial
Draw samples from a binomial distribution.| Name | Type | Default | Description |
|---|---|---|---|
n | number | — | Number of trials. |
p | number | — | Probability of success on each trial. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Binomial samples.
geometric
Draw samples from a geometric distribution. Returns the number of trials needed to get the first success.| Name | Type | Default | Description |
|---|---|---|---|
p | number | — | Probability of success. Must be in (0, 1]. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Geometric samples (positive integers).
hypergeometric
Draw samples from a hypergeometric distribution. Models drawingnsample items without replacement from a population containing ngood successes and nbad failures.
| Name | Type | Default | Description |
|---|---|---|---|
ngood | number | — | Number of good (success) items in the population. |
nbad | number | — | Number of bad (failure) items in the population. |
nsample | number | — | Number of items sampled. Must be <= ngood + nbad. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Number of good items in each sample.
logseries
Draw samples from a logarithmic series distribution.| Name | Type | Default | Description |
|---|---|---|---|
p | number | — | Shape parameter. Must be in (0, 1). |
size | number | number[] | undefined | Output shape. |
NDArray | number — Log-series samples (positive integers).
negative_binomial
Draw samples from a negative binomial distribution. Models the number of failures beforen successes.
| Name | Type | Default | Description |
|---|---|---|---|
n | number | — | Number of successes. Must be > 0. |
p | number | — | Probability of success. Must be in (0, 1]. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Negative binomial samples (non-negative integers).
zipf
Draw samples from a Zipf distribution.| Name | Type | Default | Description |
|---|---|---|---|
a | number | — | Distribution parameter. Must be > 1. |
size | number | number[] | undefined | Output shape. |
NDArray | number — Zipf samples (positive integers).
Multivariate Distributions
multinomial
Draw samples from a multinomial distribution.| Name | Type | Default | Description |
|---|---|---|---|
n | number | — | Number of experiments (total count per sample). |
pvals | ArrayLike | — | Probabilities of each category. Must sum to 1 (normalized automatically). |
size | number | number[] | undefined | Number of multinomial experiments to run. |
NDArray — Array of shape [...size, len(pvals)] with integer counts.
multivariate_normal
Draw samples from a multivariate normal distribution.| Name | Type | Default | Description |
|---|---|---|---|
mean | ArrayLike | — | Mean of the distribution (1-D array of length N). |
cov | ArrayLike | number[][] | — | Covariance matrix (N x N, symmetric positive semi-definite). |
size | number | number[] | undefined | Number of samples to draw. |
check_valid | 'warn' | 'raise' | 'ignore' | undefined | Behavior when covariance is not PSD. |
tol | number | undefined | Tolerance for covariance validity checks. |
NDArray — Array of shape [...size, N].
dirichlet
Draw samples from a Dirichlet distribution. Each sample is a probability vector that sums to 1.| Name | Type | Default | Description |
|---|---|---|---|
alpha | ArrayLike | — | Concentration parameters. Must all be > 0 and have at least 2 elements. |
size | number | number[] | undefined | Number of samples to draw. |
NDArray — Array of shape [...size, len(alpha)], where each row sums to 1.